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THERMODYNAMIC INTERPRETATION OF
THREE-PARAMETRIC EQUATION
Part I. New form of equation
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Abstract

Thermodynamic interpretation of three-parametric equation connecting conversion degree (α) with
temperature (T) was presented. One proved that thermal decomposition process of chemically de-
fined compounds (CuSO4·5H2O, PhN(CH3)2·HCl) in dynamic conditions for 5 heating rates may be
described by transformed three-parametric equation including equilibrium conversion degree.
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Introduction

The kinetic investigations of linear temperature increase vs. time (with heating rate
q>0) in dynamic conditions are still arouse great interest. The series of papers recapit-
ulating the results of the 11th International Congress of Thermal Analysis and Calo-
rimetry (ICTAC) in Philadelphia in 1996 [1–5] can show about that.

These very complicated but fascinating kinetic and thermodynamic problems
have been appearing in literature many times, except work of MacCallum and Tanner
in 1970 [6] which started the discussion on thermokinetic equations, the universal
equation of Šesták et al. [7, 8] or considerations of B�a�ejowski et al. [9–11] or others
[12] must also be taken into consideration.

The aim of the work

On St. Bretsznajder’s 7th Seminar in Zakopane (Poland) the conception of relation be-
tween conversion degree (α) and temperature (T) was presented in form of
three-parametric equation:

lnα=a0–a1/T–a2lnT, 0<α ≤1 (1)
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which is more widely discussed in [13]. Then, using of this equation was proposed in
form of relation between relative rate of reaction of thermal decomposition (r) and
temperature (T) [14]:

r=a1–a2T, where r
T

T= d

d

α
α

2 (2)

From papers published up to now results that Eq. (2) is very useful for analyzing
the reactions of thermal decomposition of complicated mixtures, as: transformation
of coal tar pitch into mesophase one [15] or transformation of triple component sys-
tem, polyolefines-technological oil-mineral additive, into fuel fractions [16].

Very important meaning of coefficient a2 (with kinetic character) and its
criterional character come true in all considerations [13–17]. When a2=0, then rela-
tions (1) and (2) simplify themselves considerably and present thermodynamic de-
scription, because α=αeq.

Therefore, the aim of the work is widening interpretation capabilities of Eqs (1)
and (2) for chemical reactions which take into consideration stoichiometric coefficient v:
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Theoretical analysis of the problem

For chemical reactions (3) the thermodynamic equilibrium constant is presented by
expression [13, 18–21]:

K p= ≅α eq
v MPa, .� 01 (4)

so, the modified van’t Hoff’s isobar may be presented in form including enthalpy of
decomposition (∆H):

ln – ,α αeq

eq

eq eqwhen= + = =∆ ∆H

vRT

H

vRT
T T 1 (5)

so, for T≥Teq reactions of type (3) become irreversible.
Taking changeable heating rates (q=1.5–3–6–12 and 24 K min–1), extremely im-

portant correlation between all coefficients of Eq. (1) has been confirmed in our in-
vestigations. Therefore, elements of linear determination coefficients square matrix
are practically greater than +0.99 (component of a diagonal is equal to 1) thus, for as-
sumed hierarchy of importance with regard to argument a2, we obtain:
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In many cases free expressions in Eqs (6) and (7) have differed numerically from
these given by Eq. (5), in spite of very important correlation. Slopes in Eq. (6) vary
insignificantly, γ=6.83–7.92. But very small deviations (as small as on the first place
after comma) cause very altered courses of inquired new form of Eq. (1). On the other
hand, in case of Eq. (7) the slope means temperature Tr. Introducing this equation into
(2) we obtain:

r
H

vR
a T T r a T T= =∆ – ( – ) – ( – )2 2r eq r (8)

For a2>0 (a2=0, then r=req) straight-line (8) intersects parallel-line r=req in point
Tr, so there is a straight-line bunch (2) intersecting in this temperature, too. This anal-
ysis is the subject of parallel publications [16, 17].

Introducing straight-lines (6) and (7) into Eq. (1) we obtain:

ln – – ln –.
.α γ= +
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T
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(9)

what we can write using expression (5) as:

ln ln – ( ), ( ) ln –α α γ= = +eq
rwherea f T f T

T

T
T2 (10)

Relationship (10) is inquired transformation of Eq. (1).
Introducing the idea of thermodynamic yield η we obtain:

ln ln – ( )α
α

η
eq













= = a f T2 0 < η≤1 (11)

The deviations from equilibrium state (5) may be explained by coefficient a2 and
temperature function f(T). When a2=0, then equilibrium state is in force for reaction (3).

When a2>0, then we have such possibilities, as:
• f(T)>0, then clear deviation of conversion degree α vs. T takes place on the right

from Eq. (5),
• f(T)=0, then α vs. T curve intersects course of curve (5) in one point; consequently:

γ α α= + = =T

T
T T Tr

eq

eq eq eqwhen = inln ,1

• f(T) has two zeros, so α vs. T intersects the course twice,
• f(T)<0, then α vs. T curve goes over curve (5) – widened analysis of such observa-

tion with regards to pressure influence (dp<0) is necessary here, because
η=α/αeq ≥1.

The temperature function f(T) should be independent from heating rate q in
Eqs (9) to (11).
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Experimental analysis of the problem

There have been many chemical compounds analyzed during our investigations, but
presentation of results was restricted to two reactions:

CuSO4·5H2O=CuSO4·3H2O+2H2O (v=2) (12)

PhN(CH3)2·HCl=PhN(CH3)2+HCl (v=2) (13)

Closer investigations of thermal decomposition of CuSO4·5H2O were presented
in [22] and choice of amine (13) has been suggested by results of [20].

Thermal decomposition of copper sulphate pentahydrate (Thermal Analysis Tuto-
rial Kit, ME-29710, Mettler TA-Test Sample) has been carried over using Mettler TG-50
thermobalance in TA-4000 thermoanalytic system, for weight samples of 20±0.01 mg, in
nitrogen (200 ml min–1) in platinum crucible (open) for 5 heating rates.

N,N-dimethyl-aniline hydrochloride has been obtained as a result of reaction be-
tween gaseous HCl with N,N-dimethyl-aniline, according to [23]. Preparation of this
compound has been consisted of two stages: in the first one, the solution of gaseous HCl
has been made in anhydrous diethyl ether; in the second one, the prepared solution of
HCl has been being added into N,N-dimethyl-aniline during continuous mixing of the re-
agents. Precipitated hydrochloride crystals have been dried. Melting point of obtained
compound has amounted to tm=68–73ºC (according to [23], tm=85–95ºC).

CuSO4·5H2O

Basing on thermodynamic additivities of compound formation from element con-
stants (Kf):

log logK v K= ∑ i f, i (14)

on Barin’s tables [24] and on Eq. (5) the following relation has been fixed for reaction (12):

ln . – / ,

.

α eq

eq

K K

K, 1

= ≤ ≤

=

1781 6667 250 450

3743

T T

T H=∆ 10.9 kJ mol–1
(15)

The curves α vs. T obtained experimentally for 5 heating rates (q) have been pre-
sented on the background of relation (15) (Fig. 1). Coefficients of Eq. (1) depend
non-linearly on heating rates (Fig. 2) and correlations in linear relations (6) and (7)
are extremely important (Fig. 3).

As we mentioned earlier, free expressions (a2=0) deviate significantly from ther-
modynamically defined values according to Eq. (5), in spite of very good linear cor-
relation. In result the reaction (10) containing only one coefficient dependent on heat-
ing rate has been obtained:

α α= = +eq exp[– ( )], ( ) . ln – .a f T f T
T

T2
34083 68334 (16)
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Fig. 1 Relation between conversion degree and temperature for 5 heating rates:
q=1.5–3–6–12–24 K min–1 on the background of equilibrium line for reaction (12)

Fig. 2 Relation between coefficients of formula (1) and heating rate for reaction (12)

Fig. 3 Linear relations (6) and (7) for reaction (12): a0=31.262+6.8334a2,
∆H/vRTeq=req/Teq=17.81; a1=11616+340.83a2, ∆H/vR=req=6667 K



Thus, Fig. 4 is the first interpretation of Eq. (10) and relation illustrated by Fig. 1.
Already superficial analysis of Fig. 4 shows that relation (16) may make us satis-

fied only partially. It is necessary to remark that this relation has been created by esti-
mation of coefficients of Eq. (1) and by linear relations (6) and (7) fixed between
these coefficients, so by three coefficients finally. One may approach the problem in
other way for the purpose of control and rewrite Eq. (16) in form:

ln – / – ln ,η γ= =a a T T a T q2 2 2r ide m (17)

and determine the coefficients a2, γ and Tr for each measure set separately. Figure 5
shows the result which corresponds to successive interpretations of Eq. (10).

Figure 5 much more profitably approach to the aim of investigations, which
show strong connection of three-parametric Eq. (1), with regards to thermodynamic
equilibrium line (5) and deviations from her, in comparison with Fig. 4.
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Fig. 4 Relation presented on Fig. 1 with consideration to model (16) for 5 heating rates
(q in K min–1) for reaction (12)

Fig. 5 Relation presented on Figs 1 and 4 with consideration to model (17) for 5 heat-
ing rates (q in K min–1) for reaction (12)



PhN(CH3)2·HCl

Equilibrium line for reaction (13) has been taken from [20]:

ln . – . / , . .

.

α αeq eq

eq K, =14

= ≤ ≤

=

20 798 87043 01 0 74

4186

T

T ∆H 5 kJ mol–1
(18)

The relation presented on Fig. 6 has been obtained by carrying the formula (17)
as correct and taking different coefficients for changeable heating rates. In this case
for 5 experimental curves f(T)>0 what makes easier their interpretation.

Thus, we observe that experimental curves course below the curve of equilib-
rium conversion degree. The coefficient a2 show domination of temperature function
f(T), although a2 values are not so large (a2=95.7–170.4). In relation to [20] it was im-
possible to obtain synthesized amine hydrochloride in form of compound of which
melting point would be conformable with [23]. It may explain impeded decomposi-
tion with regard to necessity of moisture evaporation, because the preparation has
been strongly hygroscopic.

Discussion

The trial of presentation of three-parametric Eq. (1) in form (10) containing equilib-
rium line or, directly, thermodynamic yield of reaction (11) points to very substantial
meaning of factor –a2f(T) in interpretation of relation α vs. T in dynamic conditions.
The discussed factor is of kinetic nature and it is a measure of distance from equilib-
rium state and, at the same time, of conventional reaction rate, or of relative rate of re-
action of thermal decomposition according to Eq. (2).

Nevertheless we may remark some causes, when f(T)>0 (Fig. 6). Then we ob-
serve α < αeq, conformable to the expectation. But deviation from equilibrium line
may also appear on the left, because product –a2f(T) will be positive (when f(T)<0)
and increase of experimental conversion degree will take place.
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Fig. 6 Relation between conversion degree and temperature on the background of equi-
librium line (q in K min–1) for reaction (13)



This result may be explained by Le Chatelier’s theory [13], or by inequality
∆Vdp/d<0, which for standard volume of stoichiometric reaction ∆V � >0 (gaseous
products are formed) imply α>αeq and quantitative connection is given by van Laar
and Planck’s isotherm:

∂
∂
ln –K V

RTp









 = °

T

∆ (19)

Using formula (4) and ∆Vº=vRT / p we obtain for p >0 and pº≅0.1MPa:

α=αeq (pº/p), T =idem for pº>p≥ αeq pº and 0<αeq<1 (20)

In this case α is equilibrium conversion degree with regard to decreased pressure
(p) in relation to atmospheric pressure pº. Quantitative profiting from formula (20) re-
quires knowledge about value of this pressure, what makes difficult quantitative esti-
mate of the phenomenon.

With regard to conditions of leading the endothermic process of thermal decom-
position, it means that changing heating rate and intensity of flow of inert gas, then
α>αeq. The results of thermal decomposition of CaCO3 [1, 4, 5], which occur for this
condition, may be an example. Thus, one may carry that thermodynamic state dp<0,
which is often neglected and introduced during investigations, determines relation
(5). In addition, in case of water elimination in low temperatures, one may observe
the phenomenon of liquid thermodesorption [25], which demonstrates facilitated
course of its evacuation into gas phase at low values of heating rates.

Conclusions

• Thermodynamic interpretation of three-parametric equation has been proposed by
introducing equilibrium line. One proved that this equation contains as well ther-
modynamic part (αeq) as kinetic one in form of coefficient a2 and temperature func-
tion f(T) product.

• The ideal course of thermal decomposition according to Eq. (5) in whole range of
α changeability is rarity in dynamic conditions. Formally, this equation presents
linear function lnαeq vs. 1/T and then straight-line slope is presented by (–∆H/vR).
With regard to unavoidable measure errors (αeq→α), the straight-line lnα vs. 1/T
may also signify thermokinetic relation with slope (–E/R) for 0th and nth order reac-
tion/processes.

• The frequently observed inequalities α >αeq happen, when one do not take into
consideration changeable pressure conditions (dp<0), which set new equilibrium
lines in relation to αeq vs. T for p=const. out of heating rate and flow of inert gas.

• By treating our consideration widely, we may be tempted to say a thesis that dy-
namic conditions (q >0) interlace kinetic and thermodynamic considerations mutu-
ally, what is the reason of unsynonymity, because one create excessive interpreta-
tion possibilities.
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Symbols

a1, a2, a3 coefficients of three-parametric equation, acc. to Eq. (1)
α conversion degree, 0≤α≤1
E activation energy/J mol–1

f(T) temperature function
γ slope in Eq. (6)
∆H enthalpy/J mol–1

η thermodynamic yield, 0≤η≤1
K thermodynamic equilibrium constant
v stoichiometric coefficient
p pressure/Pa
q heating rate/K min–1

r relative rate of reaction of thermal decomposition/K
R 8.314 J mol–1 K–1

R2 determination coefficient, 0≤R2≤1
tm melting point/ºC
T temperature/K
Tr slope in Eq. (7)/K
∆V volume of stoichiometric reaction/m3

Subscripts:

eq equilibrium state
i number of chemical compound
f formation

Superscripts:

o standard conditions
(s), (g) solid and gaseous state, respectively
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